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Abstract. It isshown that light absorption andlightscattering have someadditionalstructures 
owing to formation of bands for the magnetoexciton in a 2D Wigner crystal. The relative 
intensity of additional lines for absorption is  rather small because of the necessity to violate 
the Kohn theorem. For light scattering there is no such restriction and the intensity of lines 
with momentum transfer to the Wigner lattice is rather large. 

1. Introduction 

Light absorption byzo electronsin heterojunctionor MosFETdevicesin a strongmagnetic 
field is intensively investigated. The most complete and rather clear physical picture is 
obtained for the fully occupied Landau level when absorption appears as a result of 
transitions on the next empty levels [l. 21. The corresponding two-particle neutral 
excitation consistingof an electron and a hole ischaracterized by conserving momentum 
and some dispersion law defined by ZD electron4ectron interaction. Various experi- 
ments on the absorption and scattering of light deals with the wide range of filling of 
Landau levels and it is interesting to determine the peculiarities of these processes for 
the case of the 2~ Wigner crystal consisting of electrons or holes with a large lattice 
spacing. This is quite real because the Wigner crystal probably existsonly for sufficiently 
low densitiesofcrystallizingparticlesand low temperatures. In this paper we assumezero 
temperature. The considerable interest in such a problem isconnected with experimental 
claims about the existence of the Wigner crystal in such a situation [3]. The first obser- 
vation of the Wigner crystal (in the absence of a magnetic field) have been done in the 
system of electrons above a helium surface more than a decade ago [4]. 

Thecalculationsfor the form of line for light absorption near the cyclotron frequency 
were performed for ?D systems in a number of papers (see, e.g., [ 5 , 6 ] )  mostly using 
computers in variousapproximations to  take into account electron-electron interaction. 
In a recent paper [7] the same problem was investigated directly for the Wigner crystal 
by considering the interactionof Wigner phonons with phononsof the underlying crystal 
lattice. The main difference between our work and that in [7] consists in taking into 
account the whole dispersion curve for magnetic excitons which splits in separate bands 
owing to the periodicity of the Wigner crystal. In [ 7 ] ,  only the vicinity of zero mag- 
netoexciton momentum was considered. In that case, all peculiarities connected with 
these bands vanish. 
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2. Electron-electron interaction and the Kohn theorem 

The well known Kohn theorem states that the centre-of-mass motion does not depend 
on the interaction of electrons in a quadratic dispersion law manner if there are no 
external forces. Corresponding energy levels are quantized in units of free-electron 
cyclotron frequency U,. In this case the operator Z k  b:uk for the creation of a mag- 
netoexciton with zero momentum commutes with the Hamiltonian. Here we use the 
Landau gauge with k as the index of the state, uk the annihilation operator on the lowest 
Landau level n = 0, and 6: the creation operator on the first Landau level n = 1. It is 
essential to write down this commutation explicitly in order to see various effects in the 
heterojunctions invalidating the Kohn theorem and defining the peculiarities of light 
absorption. 

We assume that the Coulomb energy Vc(IH) = e2/xIu is small compared with the 
free-electron cyclotron frequency, where x is the dielectric constant of the underlying 
lattice and IL = ch/eH is the magnetic length. Accordingly we shall retain in the inter- 
action Hamiltonian only the terms conserving the occupation of Landau levels: 
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t H, , ,  = E I2 -exp[iq,(k, -kl)]  [V~,~(4)ak*~+~,!2ak~-9r/2nkl+9,/2aki-9r/2 

+ [vw,ii(q) - ~ o i . o ~ ( ~ ) ~ ~ ~ , - q , ~ , ~ ~ ~ ~ - q , ~ ~ ~ ~ ~ - ~ ~ ~ z ~ ~ , - ~ ~ / t ]  (1) 

VW.W = V(q)lLwI2 v,,,, = W L W L I I  VU,.", = v(q)/Lu.l I 2  (2) 

where 

where V(q)  is the Fourier transform of the electron-electron interaction and the nor- 
malized wavefunctions of the Landau states have the form 

exp(iWQ,(y + k )  
withx, y coordinates in the ZD plane; we assume also that I, ,  = 1. The appearance of Vol 
is connected with the possibility of representing the exchange as a direct interaction 
using some Fourier transformation [2]. 

The operator of the creation of a magnetoexciton with momentumpis [2] 

1 
A + @ ) = Z -  exP( - iP,k)bniip,,v%-,,~~ km 

where we insert the normalizing factor to ensure that (A(p )A+(p) )  = 1 and N ,  is the 
number of 2D electrons. This operator must be commuted with the Hamiltonian (1). 
After some simple but tedious algebra we obtain 

i-= [ H A + ( p ) ]  
at 
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where p i s  the Fourier transform of the hole density (the Wigner hole crystal) and the 
effective interaction potential is 

v&, 4) = VW&)~XP(~P. q/2) - VOO.II (9) ew(ip. d 2 )  

Ve&, 4) = v m , d q )  exp(ip * q/2) - ~ C Q . I I ( ~ )  exdip.  4/2) 

- ~ O l . O l ( ~ )  exp(kJ. q/2) ( 5 )  

- ~ol ,o l (q )  exp(ip. d 2 ) .  (6)  
Forp = 0 we get Veff = V(q)[L&,(q) - L w ( q ) L l l ( q )  - ILol12]. The Kohn theorem 

requires that V,,(p = 0, q) and ve& = 0, q) vanish and indeed the combination of L, 
entering (4) vanishes for the quadratic dispersion law of electrons. In this case, 0; are 
oscillator wavefunctions and Le&) are connected with the Laguerre polynomial: 

L ,  = exp( -q*/2) 

GI = (q2/2)exp(-q2/2). 

L , ,  = (1 - qz/2) exp(-q2/2) 

If we take into account non-paraboliccorrections to the dispersion law which destroy 
exact compensation of Ljk in (5) and (6)  there will be a non-zero V,, - q2a2/l$, where 
a is the atomic spacing of the order of the lattice constant for the underlying crystal. The 
vanishing of Vcff(q = 0) is connected with the general orthonormal properties of the 
eigenfunctions @,. 

We are interested in light absorption which is defined by the real part of the AC 
conductivity. Using standard perturbation theory in an electric field it is easy to express 
this (see, e.g. [2]) in terms of the retarded magnetoexciton Green function: 

Re[u+(w)] = (n,e2w,/m)(n + 1) Im[G(w.p = O)] (7) 
where ut is the conductivity for circular polarization at frequency w ,  ne is the number 
electron density, m is the effective mass and n is the number of the last occupied Landau 
level (the transition n + n + 1). The retarded Green function is defined as 

G(w,p) = 1’ d t W o I A ( p ) A + ( p ) l ~ d  exp(io4 

where [Yo) is the ground-state wavefunction for 2D electrons. 
Because of the small density of particles participating in Wigner crystallization it is 

possible to use perturbation theory to calculate the magnetoexciton Green function 
using the equation of motion (4) and the simplest mean-field approximation. The 
corresponding diagram is shown in figure 1, where the thick black straight line denotes 
the retarded magnetoexciton Green function for filled Landau level: 

0 

WWP) = l/[w - &(PI + is] 
and 

&(PI = hw, + (ez/2x1,)W5[(1 - exp(p2/4)[(1 +p2)l0(p2/4) - (pZ/2)rI(p2/4) 

+ m p  exp(p2/2)1 
is the magnetoexciton dispersion law for fully occupied Landau level [ll where I ,  are 
Bessel functions of imaginary argument. The wavy lines correspond to Veff - V,,, the 
open circles denote the average (Yo\fi\Yo) and the diagonal on the thick black straight 
line corresponds to Im[Go(w,p)]. Because of the periodicity of the Wigner crystal the 
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mean value of the hole density P(k) has 6-function singularities at k on the reciprocal 
lattice of the Wigner crystal. 

The corresponding correction to the imaginary part of the  magnetoexciton Green 
function is 
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where k, are the vectors of the reciprocal Wigner lattice, and p(k,) is the Fourier 
component of the hole density. Because non-parabolic corrections to the ZD electron 
dispersion law are not known with enough accuracy, we did not calculate the cor- 
responding perturbation correction to the free-electron wavefunction for this diagram 
which otherwise will be zero. However, it is possible to obtain an estimation by the order 
of magnitude. The effective momentum transfer k, to the Wigner lattice is of the order 
of inverse lattice spacing L-’ where L - (1 - Y ) - ’ ’ ~  9 1 ( v  is the filling factor of last 
Landau level). From the orthonormal properties of Yr it follows that L,k = 6,k and 
V& = 0) = 0 in any case. Because V,,  - e ’ a ’ / X l ~  % Veff we get an estimate for 
correction to the imaginary part of Green function 

(1 - v)’(a4/ l&)[e’ /xlMh(w - w,)] ’  Im[Go(w, I C , ) ] .  (9) 
Fork, of the order of basic reciprocal lattice vectors E(k,) - w, - (e2/,y)p - e2/XL and 
we see that relative intensity of absorption on satellite will be proportional to the hole 
filling factor and is small as (6w,/0,)~(1 - v) where dw, is the non-parabolic correction 
to cyclotron frequency. 

Equation (8) can be generalized for any dynamical form factor S of the electron 
system: 

~1 
Im[Gdw-Q,k)l 

(0- w c ) -  
- VdI ( k )  I2S(k Q ) 

where 

S(k, S 2 )  = 1’ @(r, k)p(O, -k))exp(iRt) dt. 
..I 

If  the electron system is non-uniform, then there is a statistical part of S(k, Q) = 
6(Q)(P,(k)P,,(-k)) which has 6-function singularities in k for the Wigner crystal. The 
real form of the absorption line can be obtained by integration taking into account some 
scatteringprocess in Go(@,  k), e.g. assuming the same scattering rate I /r  as for w = U,, 
which can be taken from experimental data. 

In the next section we consider other small corrections connected with crystal 
phonons and impurities which also violate the Kohn theorem and give rise to light 
absorption in the vicinity of the frequencies w = E(k,). 

3. The influence of phonons and impurities 

Assumingthat theseeffectsare weakweshalluse thelowestorderofperturbation theory 
considering the simplest diagrams for Green functions shown in figure 2. The broken 
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Figure 1. Simplest diagram for light absorption 
with momentum transfer to the Wigner crystal 
lattice due to non-parabolic wrrections to the 
electronic dispersion law. The  open circles cor- 
respond to a non-uniform electron density in the 
Wigner crystal. The thick black line is the free 
magnetoexciton propagator while the wavy line is 
the photon propagator. 

Figure 2. Dispersion curve for magnetoexcitons 
split into separate bands in the extended zones. 
Small gaps are not shown. 

Figurc3. Light absorption with momentum trans- 
fer to the Wigner crystal due to  3d phonons. The 
broken curves represent the phonon propagator. 

Figure4. Light absorption with momentum trans- 
fer to the Wigner crystal due to impurities. The 
wavy lines with a cross are the correlation func- 
tions for the impurity potential, 

lines correspond to the phonon propaga:or. According to the Kohn theorem there will 
be no interaction between the magnetoexciton with zero momentum and the Wigner 
crystallic field until virtual emission of phonons. 

First we shall find corrections to the cyclotron frequency due to the first three 
diagrams in figure 3. It is easy to show that the main contribution is due to optical 
polarization phonons. The contribution of acoustical phonons with apiezoelectric effect 
is small: 

4n/x2(1/x, - l/x0)-' e, ,Jps2 - 
for GaAs, where p is the density, x- is the optical dielectric constant and eI4 is the 
piezomodulus. 

The electron-phonon interaction has a standard form and after integration over 
space coordinates the effective Hamiltonian for the magnetoexciton is 

ffenc.ph = I : g ( P , q ) o l + ( q ) A ' ( p - q l l ) A ( g ) + C C  (11) 
P . S  
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where Ly+(q) is phonon creation operator with 3D momentum q. 411 is 2D counterpart of 
phonon momentum, and 
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Heref&) is the wavefunction for transverse motion (across the plane) for 2D electrons 
and coo is optical phonon frequency. Assuming that qa - a / / ,  e 1 where a is the trans- 
verse well dimension. we take I (p , )  - 1. Usingperturbation theory and expression for 
effective vertex (11) we obtain the shift of magnetoexciton energy as 

Neglecting ~ ( 0 )  - ~ ( p )  - e2/xolH hw, we obtain A & ( p  = 0) = ( 3 f i  e2/16/,) X 
( l / x z  - l/xo) = 5 x 10-3eZ/IH for GaAs. 

Although this shift is rather small, it violates the Kohn theorem and is of some 
interest because it will oscillate with filling factor. The oscillation is connected with 
screening by ZD electrons and can be considered by inserting a polarization electron 
bubble into the phonon propagator in figure 3. Exact calculation of appropriate cor- 
rection is rather difficult because we need to make some assumptionsabout the ground 
state of ZD electrons. Assuming a scale of about eZ/xo/, for energy it is possible to 
estimate the amplitude of the oscillating component: 

A,,E(P = 0) = [ v ( l  - v)e2/IH](l/xx - l / xo )  x constant 

with an uncertain constant of the order of unity. The above corrections to the dispersion 
law of magnetoexcitons are small and insensitive to the periodic structure of the Wigner 

~ 

crystal. 
The matrix element for absorption on E(k,) will be defined by an analytical expression 

corresponding to the final line in.figure 3: 
d'q d'k IMq, O N 2  P ( k ) V d k )  -- &f w - ~ ( q )  - wo(q) w - &(q + k) - wo(q)  (ZZ)' ( 2 ~ ) ~ '  

If we neglect w - E compared with wu,  i t  is possible to get an analytical result for 
conductivity: 
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Assuming that e2/IHwo - 1 and a4/1h - lo-* we get from (15) and (9) that the 
phonon contribution to  the intensity of absorption is lo2 more than the non-parabolic 
contribution but unknown numerical factors can reverse the estimate. 

Equation (14) can be generalized in the same form as equation (8): 

Re[o'(w)] = 
2mw 

The treatment of impurities is very much analogous to phonons. We shall not consider 
the corrections to the dispersion curve but only the effect of impurities on absorption. 
The corresponding diagram is given in figure 4, where the crosses denote the averages 
over impurities. We shall consider impurities in the Born approximation by substituting 
in the final expression the full scattering amplitude. The analytical expression cor- 
responding to this diagram is 

l(l(K')I2 f 5 [W - &(E' + k,)][W - E(/?)]' 

Here no is the number density of impurities and U ( k ) / k z  is the Fourier component of 
their potential acting on electrons. There is a contribution to the imaginary part of the 
exciton Green function when we are on the pole just after scattering on the impurity. 
Such a process gives rise only to the continuum part of absorption and will not be 
considered because it is not specific to the Wigner crystal. 

We can estimate the integral by taking into account only the poles of the integrand, 
i.e. ~ ( k ' )  = o or ~ ( k ,  + k ' )  = w. The difference E(P) - ~ ( k '  + k,) is just the gap in the 
energy spectrum of exciton and is of the first order in the periodic Wigner crystal 
potential, i.e. of the order of pveff and we obtain as an estimate for absorption shifted 
in frequency due to the periodicity of the Wigner crystal 

where the mean free path I - ' (k)  = nou(k) with the cross-section in the Born approxi- 
mation given by U = lU(k)l* k/(ae/ak)2. The generalization of (17) to thegeneral form 
ofthedynamicalformfactorisstraightforwardasinequations(8) and(l4)andisomitted 
here. 

4. Inelastic tight scattering 

In experiments by Pinnuk etal [S] on light scattering in the heterojunction a shift of the 
Light frequency to the value of the so-called roton gap was observed. Let us consider the 
situation for the Wigner crystal. The frequency of scattered light in these experiments 



9110 S V Iordanskii and B A Muzykantskii 

Figure 5. (a). ( b )  Vertex for Raman scattering 
with momentum lransfcr to the Wigner crystal. 
(c) Vertex for Raman scattering with momentum 
transfer to the Wigner crystal which vanishes 
according to the Kohn theorem. 

was near the band gap for GaAs. The electron from the valence band on a Landau level 
goestoanother Landau level in theconductance band, formingavirtual magnetoexciton 
with zero momentum. Then this exciton is scattered by the periodic potential of the 
Wigner crystal and changes its momentum on some vector of the reciprocal Wigner 
lattice. This virtual exciton can create in the Wigner crystal an additional exciton 
consisting of an electron on an unoccupied Landau level and a hole on an occupied 
Landau level in the conduction band. The corresponding diagrams are given in figures 
5(a) and 5(6). All other diagrams such as that in figure S(c) give zero contribution 
because of the Kohn theorem (a magnetoexciton with a zero momentum does not 
interact with Wigner crystals). 

The non-zero contribution in figures 5(a) and 5(b) arises because the valence and 
conductivity bands have quite different dispersion laws, and holes and electrons created 
by light are in  the same Landau states. 

In order to compute the contribution in figures 5(a) aqd 5(6) to the scattering 
amplitude, we need the corresponding vertices. We must take into account the different 
natures of the Bloch functions in the valence and the conduction bands. The vertex for 
light interaction is defined by the integral of the current density: 

where the electronic operator is split into the valence and conduction counterparts: 

and U, and U, are the Bloch functions corresponding to the conduction and valence 
bands, respectively (see, e.g., 191). It is easy to show that the main term in Hi is 
H, = (./.)A ~ M , , , & P + ( k ) n ( k )  where the interband integral is 

and the transitions are mainly between the same Landau levels for electrons and hole, 
a ( k )  is the operator for a hole in the valence band and P(k)  is the creation operator for 
an electron on the same empty Landau level m in the conduction band. 
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We are interested in the computation of the vertices in figure 5; therefore we shall 
neglect those terms in the Hamiltonian which shift the energy of the interband exciton: 

where ak corresponds to a hole in the lowest conduction Landau level, b: corresponds 
toan electron in the first conduction Landau level. In the first term the magnetoexciton 
is created by a valence hole, and in the last two terms it is created by a conduction 
electron. Also there are terms describing the interaction of the interband exciton with 
electrons on the partially filled lowest Landau level: 

In order to get the appropriate vertices we must commute the Hamiltonian with the 
creation operator for the interband exciton, i.e. A +(q) = x k  exp(iq,k) Pf+q,/z@k-q,?/z. 

Because the Landaustatesof a holein thevalence bandandanelectronin theconduction 
band forming the interband exciton must be the same, there is some cancellation of 
direct interaction and we obtain 

For commutation with fl') there is also some cancellation and we get 

where 

A(+) (P)  = e x P ( - i k ~ ~ ) b ~ ~ ~ ~ / 2 a k - ~ ~ ~  
k 

is the creation operator for a magnetoexciton in the conduction band on the partially 
filled lowest Landau level and 

The results obtained above can be reformulated as an effective Hamiltonian for the 
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interband magnetoexciton: 
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where E ( p )  is the interband magnetoexciton energy, the precise form of which is not 
essential. 

From (20) it is easy to get the analytical expression for the inelastic scattering rate of 
light with thechangeinfrequencyw- w ' .  correspondingto theumklappprocessshown 
in figure S(a): 

%+<o, - c IM%" vjc".c,nt 1) (k , )von.m(-kr)P(ki) l*  
k ,  

1 I [ w -  E(O)+ ih][w-E(k,) + id][w-E(O) - E(k,) +<6] l z Im[G(w-w ' ,k , ) J  (21) 

where we haveomittedsomeconstant factors which are thesamealso for light scattering 
without umklapp processes: 

We see that the relative intensity will be of the order of 

IP(k , )p(k , ) / [w - ~(k , ) l12  {Im[G(w - w ' ,  k,)l/Im[G(o -U', O)l} 
- \e2/xa~H[w-E(k,)]12 {Im[C(w-w', k,)]/Im[C(w-w',O)]}(l- v ) ? .  

The estimate of the analytical expression for figure 5(b) does not differ essentially. 
We see that violation of translational symmetry in the Wigner crystal gives rise to 

light scattering shifted by the magnetoexciton energy for momentum on the reciprocal 
lattice with quite a large intensity. If the momentum transfer to the Wigner lattice is 
largecompared with basic reciprocal vectors, the peaks in P(k, )  will be small and smooth 
and we shall see only a maximum in the intensity of scattered light in the vicinity of the 
roton pap where the density of states is the largest. 

Some similar process will take place even in electronic liquid, probably with some 
additional energy loss due to momentum transfer to the liquid. Equation (21) can be 
generalized for any kind of dynamical form factor for a 2D electronic liquid as was done 
previously for light absorption: 

lm[G(E. k)] 
X 

I [w - E(O)][w' - E(k)][w' - E(O)]I2' 

The dynamical form factor for an electronic 2~ system at arbitrary filling of the Landau 
level is in fact not known. At small densities the energy of intra Landau level excitations 
is also small. Experimental estimates give the value of the gap in fractional Hall states 
as small compared with ~ ~ / j & ;  therefore in the general expression for transition 
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probability T k w ,  the frequency w' cannot probably deviate strongly from w' = 
w - ~ ( k ) ,  and because of the large density of states near the roton gap the scattering will 
be concentrated near w' = w - A,,,,. These considerations can probably explain the 
observation by Pinauk et al [8] of the violation of translational symmetry for light 
scattering in an extremely pure heterojunction. 
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